Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
نویسنده
چکیده
Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data. Moreover, we show our methodology performs much better in real data sets compared to available approaches.
منابع مشابه
Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models
In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical normal models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...
متن کاملSURE Estimates for a Heteroscedastic Hierarchical Model.
Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic norm...
متن کاملOptimal Shrinkage Estimation in Heteroscedastic Hierarchical Models
Hierarchical models are powerful statistical tools widely used in scientific and engineering applications. The homoscedastic (equal variance) case has been extensively studied, and it is well known that shrinkage estimates, the James-Stein estimate in particular, offer nice theoretical (e.g., risk) properties. The heteroscedastic (the unequal variance) case, on the other hand, has received less...
متن کاملHeteroscedastic Ridge Regression Approaches for Genome-Wide Prediction With a Focus on Computational Efficiency and Accurate Effect Estimation
Ridge regression with heteroscedastic marker variances provides an alternative to Bayesian genome-wide prediction methods. Our objectives were to suggest new methods to determine marker-specific shrinkage factors for heteroscedastic ridge regression and to investigate their properties with respect to computational efficiency and accuracy of estimated effects. We analyzed published data sets of ...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015